593. Acid Dissociation Constants of the Ammonium Group in 2-Aminoethanol, 2-Aminoethyl Phosphate, and 2-Aminoethyl Sulphate.

By S. P. Datta and A. K. Grzybowski.

The thermodynamic acid dissociation constants of the ammonium group in 2 -aminoethanol, 2 -aminoethyl phosphate, and 2 -aminoethyl sulphate * have been determined from e.m.f. measurements in cells without liquid junction, by using hydrogen and silver-silver, chloride electrodes, at $5^{\circ}, 15^{\circ}, 25^{\circ}, 35^{\circ}$, and 45°. Equations in temperature have been fitted to the results and the thermodynamic quantities associated with these dissociations evaluated and critically compared. An attempt is made to divide them into " environmental" and "non-environmental" components and to interpret the former in terms of the electrostatic interactions between the solute species and water.

After our investigation of the first two dissociations of 2 -aminoethyl dihydrogen phosphate ${ }^{1}$ it was of interest to extend this work to the third dissociation of this compound (ammonium group) and to related compounds, so that the effect of esterification of 2 -aminoethanol with groups of various charge types could be investigated. Consequently chloridecontaining buffer solutions of these compounds were used in cells without liquid junction of the type:

$$
\begin{equation*}
\mathrm{Pt}, \mathrm{H}_{2}(1 \mathrm{~atm} .)\left|\mathrm{R} \cdot \mathrm{NH}_{3}^{+}\left(m_{1}\right), \mathrm{R} \cdot \mathrm{NH}_{2}\left(m_{2}\right), m_{\mathrm{Cl}-}\right| \mathrm{AgCl}, \mathrm{Ag} \tag{1}
\end{equation*}
$$

where m_{1}, m_{2}, and m_{Cl} are molal concentrations. From the e.m.f.'s of these cells, values of pwH were derived:

$$
\begin{equation*}
\mathrm{pwH}=\left[F\left(E-E_{0}\right) / \boldsymbol{R} T \ln 10\right]+\log m_{\mathrm{Cl}^{-}}=-\log a_{\mathrm{H}_{+}} \gamma_{\mathrm{Cl}^{-}} . \tag{2}
\end{equation*}
$$

The values of $\mathrm{p} K_{a}$ are related to pwH as follows:

$$
\begin{equation*}
\mathrm{p} K_{a}=\mathrm{pwH}+\log \frac{m_{\mathrm{R} \cdot \mathrm{NH}_{3}+}}{m_{\mathrm{R} \cdot \mathrm{NH}_{\mathbf{2}}}}+\log \frac{\gamma_{\mathrm{R} \cdot \mathrm{NH}_{3}+}+\gamma_{\mathrm{Cl}}}{\gamma_{\mathrm{R} \cdot \mathrm{NH}}^{\mathbf{2}}}, \tag{3}
\end{equation*}
$$

where the activity coefficient term is represented by ${ }^{2}$

$$
\begin{equation*}
-\log \frac{\gamma_{\mathrm{R} \cdot \mathrm{NH}_{3}}+\gamma_{\mathrm{Cl}^{-}}}{\gamma_{\mathrm{R} \cdot \mathrm{NH}_{3}}}=\Sigma z_{i}^{2} A I^{\mathfrak{t}}+B I+C I^{\frac{2}{2}}, \tag{4}
\end{equation*}
$$

where $\Sigma z_{i}{ }^{2}$ is the sum of the squares of the charges on the ionic species in the numerator of the left-hand side of eqn. (4) minus the square of the charge on the species in the denominator. $\Sigma z_{i}{ }^{2}$ is +2 for 2 -aminoethanol, 0 for 2 -aminoethyl sulphate, and -2 for 2 -aminoethyl phosphate. Corrections were applied for the hydrolysis of the basic species

[^0]and for complex-formation with silver ions where necessary. ${ }^{2}$ The hydroxide-ion concentration was calculated from: $m_{\mathrm{OH}^{-}}=$antilog $\left[\mathrm{pwH}-\mathrm{p} K_{\mathrm{w}}\right]$, where $\mathrm{p} K_{\mathrm{w}}$ is the negative logarithm of the ion product of water calculated from Robinson and Stokes's equation. ${ }^{3}$ The stability constants for the silver complexes were taken from an earlier paper. ${ }^{4}$

The thermodynamic value of $\mathrm{p} K_{a}$ was found by extrapolating to zero ionic strengths the function

$$
\begin{equation*}
y=\mathrm{pwH}+\log \frac{m_{\mathrm{R} \cdot \mathrm{NH}_{3}+}}{m_{\mathrm{R} \cdot \mathrm{NH}_{2}}}-\Sigma z_{i}^{2} A I^{\frac{1}{2}}=\mathrm{p} K_{a}-B I-C I^{\frac{3}{2}}, \tag{5}
\end{equation*}
$$

which is obtained by combining eqns. (3) and (4). The constants B and C are empirical parameters. The extrapolation was carried out by fitting experimental values of y to the above equation by least squares. The thermodynamic $\mathrm{p} K_{a}$'s were fitted to the Harned and Robinson equation ${ }^{5}$:

$$
\begin{equation*}
\mathrm{p} K_{a}=A / T-D+C T \tag{6}
\end{equation*}
$$

from which the thermodynamic quantities associated with the ionisations were then derived in the usual way.

Results and Discussion

The e.m.f.'s, the molalities, the ionic strengths, and the extrapolation functions y from eqn. (6) are given in Tables 1-3. The observed and the calculated values of $\mathrm{p} K_{a}$, the constants of eqns. (5) and (6), and the standard errors are collected in Tables 4-6. The thermodynamic functions, including those for taurine, ${ }^{6}$ are in Table 7. The dissociation constants of 2 -aminoethanol between 0° and 50° were determined by Bates and Pinching; ${ }^{7}$ the constants were redetermined in the present investigation to see whether our method of extrapolation, for buffer solutions containing an additional salt, would give the same values. We used the hydrochloride partly neutralised with sodium hydroxide so that a certain amount of sodium chloride was present, whereas in Bates and Pinching's work pure base neutralized with hydrochloric acid was employed. This is important because, with the other compounds investigated here, it is inevitable that another salt is present. The error ${ }^{8}$ is about the same in the two sets of results and amounts to $\pm 0.004 \mathrm{pK}$ unit. As the maximum difference between the calculated values from the two sets is 0.005 pK unit, the agreement is satisfactory.

When our results are extrapolated to zero ionic strength with the full Debye-Hückel equation to represent the activity coefficient term, the parameter for the closest approach of the ions $\left(a^{*}\right)$, found by minimising the variance about the extrapolation lines, lies between 0 and the impossible value of -5 at 45°. This compares with $a^{*}=1$ found by Bates and Pinching. For our results, the thermodynamic pK 's found by using the Debye-Hückel equation with $a^{*}=0$ (i.e., the limiting law) are much higher than those found from eqn. (5), by between 0.004 and 0.015 pK unit. Both methods of extrapolation appear to fit the results almost equally. For instance, for our results at 25°, the variance about the line of eqn. (5), $\Sigma \Delta^{2} /(n-3)$, is 2.15×10^{-6}, where Δ is the difference between the experimental value at a given ionic strength and the value predicted by the equation and n is the number of points; while for the line obtained by using the Debye-Hückel equation the minimum value for the variance about the line, $\Sigma \Delta^{2} /(n-2)$, is 2.60×10^{-6}. The errors of the intercepts, calculated by standard statistical methods, are $\pm 0.003_{9}$ and

[^1]Table 1.
2-Aminoethanol: molalities and ionic strengths of solutions, e.m.f.'s of cell (l) (abs.v) and extrapolation functions y [eqn. (5)].

Table 2.
2-Aminoethyl phosphate: molalities and ionic strengths of solutions, e.m.f.'s of cell (1)
(abs.v), and extrapolation functions y [eqn. (5)].
$m_{1}=$ molality of 2 -aminoethyl dihydrogen phosphate; $m_{2}=$ molality of $\mathrm{NaOH} ; m_{3}=$ molality of KCl ; $y=\mathrm{pwH}+\log \left(2 m_{1}-m_{2}+m_{\mathrm{OH}}-\right) /\left(m_{2}-m_{1}-m_{\mathrm{OH}}-\right) ; I=2 m_{2}-m_{1}+m_{3}-m_{\mathrm{OH}_{5}}$.

	Set I.										
	$10^{2} m_{1}$	$0 \cdot 4023$	0.5547	$0 \cdot 7236$	$0 \cdot 3981$	0.5525	0.7226	0.9191	1-1754	1.2823	$1 \cdot 4697$
	$10^{2} m_{2}$	0.5371	$0 \cdot 7406$	0.9661	$0.5315{ }^{-}$	$0 \cdot 7376$	0.9647	$1 \cdot 2271$	1.5693	1.7120	1-9621
	$10^{2} m_{3}$	0.7940	$1 \cdot 0948$	$1 \cdot 4282$	0.7857	1.0905	1.4262	1.8141	$2 \cdot 3200$	2.5309	$2 \cdot 9006$
Temp.											
5°	$10^{5} \mathrm{E}$	94545	93180	93811	94565	93825	93202	92614	92027	91812	91458
	y	11-14455	11-13571	11-12754	$11 \cdot 14411$	$11 \cdot 13700$	11-13103	11-12195	$11 \cdot 11696$	11-11411	11-10673
	10^{2} I	1.45499	$2 \cdot 00977$	$2 \cdot 62319$	$1 \cdot 43924$	$2 \cdot 00180$	$2 \cdot 62145$	3-33769	$4 \cdot 27170$	$4 \cdot 66117$	5-34394
15	$10^{5} \mathrm{E}$	94715	93970	93326	94735	93985	93349	92743	92141	91915	91554
	y	10.83310	$10 \cdot 82486$	$10 \cdot 81641$	10.83261	$10 \cdot 82607$	$10 \cdot 82016$	$10 \cdot 81039$	10.80554	$10 \cdot 80178$	10.79498
	10^{2} I	1.45261	$2 \cdot 00777$	$2 \cdot 62319$	$1 \cdot 43737$	1.99980	$2 \cdot 61939$	$3 \cdot 33562$	$4 \cdot 26959$	$4 \cdot 65908$	5•34184
25	$10^{5} \mathrm{E}$	94855	94098	93440	94881	94115	93463	92839	92219	91987	91616
		10.54872	10.54057	10.53196	10.54936	10.54210	10.53563	10.52516	10.51985	$10 \cdot 51611$	$10 \cdot 50933$
	10^{2} I	1.45079	2.00582	2.62118	$1 \cdot 43551$	1.99784	2.61736	3.33358	4.26753	$4 \cdot 65702$	$5 \cdot 33978$
35	$10^{5} E$	94967	94201	93526	94994	94213	93548	92902	92268	92028	91648
		$10 \cdot 28780$	10-28034	$10 \cdot 27108$	$10 \cdot 28858$	10.28090	$10 \cdot 27446$	$10 \cdot 26261$	$10 \cdot 25758$	$10 \cdot 25351$	10.24690
	$10^{2} I$	$1 \cdot 44909$	2.00397	2.61927	$1 \cdot 43381$	1.99602	2.61545	3.33169	$4 \cdot 26558$	4.65508	5-33783
45	10^{5} E	95033	94265	93579	95076	94281	93605	92936	92285	92036	91656
	y	$10 \cdot 04416$	$10 \cdot 03897$	$10 \cdot 03023$	$10 \cdot 04794$	10.04020	$10 \cdot 03426$	10.02096	10.01573	10.01119	10.00629
	$10^{2} I$	$1 \cdot 44769$	$2 \cdot 00237$	$2 \cdot 61758$	$1 \cdot 43232$	1.99440	$2 \cdot 61373$	3-32998	$4 \cdot 26383$	$4 \cdot 65334$	$5 \cdot 33603$
		$1 \cdot 6558$	1.8451	$2 \cdot 0047$	$2 \cdot 1315$	$2 \cdot 3096$	$2 \cdot 5540$				
	$10^{2} m_{2}$	$2 \cdot 2106$	$2 \cdot 4633$	$2 \cdot 6764$	$2 \cdot 8457$	$3 \cdot 0835$	$3 \cdot 4098$				
	$10^{2} m_{3}$	$3 \cdot 2680$	$3 \cdot 6416$	3.9566	4-2069	4.55848	5.0409				
Temp.											
5°	$10^{5} E$	91153		90675	90513	90300	90062				
		11.10141		11.09540	$11 \cdot 09196$	$11 \cdot 08734$	11.08701				
	10^{2} I	$6 \cdot 02234$		$7 \cdot 29374$	$7 \cdot 75603$	$8 \cdot 40514$	$9 \cdot 29574$				
15	$10^{5} \mathrm{E}$	91238	90947	90742	90578	90356	90111				
		10.78933	$10 \cdot 78367$	$10 \cdot 78271$	10.77983	$10 \cdot 77480$	$10 \cdot 77458$				
	$10^{2} I$	$6 \cdot 02026$	$6 \cdot 71009$	$7 \cdot 29169$	7.75397	$8 \cdot 40310$	$9 \cdot 29370$				
25	$10^{5} E$	91290	90991	90779	90610	90381	90125				
		10.50351	10.49793	$10 \cdot 49682$	10.49394	$10 \cdot 48886$	$10 \cdot 48805$				
	10^{2} I	6.01821	$6 \cdot 70805$	$7 \cdot 28964$	$7 \cdot 75193$	$8 \cdot 40107$	$9 \cdot 29168$				
35	$10^{5} \mathrm{E}$	91308	91007	90786	90613	90373	90111				
		$10 \cdot 24024$	$10 \cdot 23578$	10-23418	$10 \cdot 23145$	$10 \cdot 22567$	$10 \cdot 22513$				
	10^{2} I	6.01630	6.70610	$7 \cdot 28770$	$7 \cdot 74999$	$8 \cdot 39917$	$9 \cdot 28976$				
45	10^{5} E	91274	90989	90765	90585	90325	90063				
		9.99416	9.99378	9.99271	9.98964	$9 \cdot 98170$	9.98243				
	$10^{2} I$	6.01472	$6 \cdot 70435$	$7 \cdot 28593$	$7 \cdot 74823$	8-3975	9-28804				

Table 2 (continued)

						II.					
	$10^{2} m_{1}$	$0 \cdot 3909$	$0 \cdot 4600$	0.5752	0.7486	1-1339	$1 \cdot 5081$	1.9004	0.6825	0.9385	$1 \cdot 3301$
	$10^{2} m_{2}$	$0 \cdot 6267$	0.7374 ,	0.9222	$1 \cdot 2001$	1-8178	$2 \cdot 4178$	$3 \cdot 0457$	$1 \cdot 0942$	1.5046	$2 \cdot 1324$
	$10^{2} m_{3}$	$0 \cdot 3908$	0.4599	$0 \cdot 575{ }_{7}$	$0 \cdot 7484{ }_{9}$	1-1337	1-5079	$1 \cdot 9002$	$0 \cdot 6824$	0.9384	$1 \cdot 32996$
Temp.											
5°	$10^{5} E$	98519	98209	97751	97198	96260	95594	95038	,	96683	95883
	y	11-15528	11-15375	11-14763	$11 \cdot 14218$	11-12777	$11 \cdot 11836$	11-10964	11-14425	11-13238	11-12114
	$10^{2} I$	$1 \cdot 22415$	$1 \cdot 44487$	$1 \cdot 81335$	$2 \cdot 36823$	$3 \cdot 60313$	$4 \cdot 80312$	6.06121	$2 \cdot 15665$	$2 \cdot 97706$	$4 \cdot 23243$
15	$10^{5} E$	98783	98467	98000	97447	96496	95817	95247	97645	96927	96109
	y	$10 \cdot 84435$	$10 \cdot 84175$	10.83457	$10 \cdot 83014$	10.81618	$10 \cdot 80673$	$10 \cdot 79800$	10.83214	$10 \cdot 82097$	$10 \cdot 80905$
	$10^{2} I$	1.21997	$1 \cdot 44048$	1.80869	2.36314	3-59758	$4 \cdot 79736$	6.05534	$2 \cdot 15168$	2.97169	4.22681
25	$10^{5} \mathrm{E}$	99018	986995	98226	97666	96699	96004	95422	97864	97139	96303
	${ }^{y}$	10.56029	10.55748	$10 \cdot 54961$	10.54519	$10 \cdot 53093$	10.52108	10-51224	10.54684	10.53604	10.52352
	$10^{2} I$	1.21602	1.43626	$1 \cdot 80417$	$2 \cdot 35823$	3.59222	$4 \cdot 79178$	6.04964	$2 \cdot 14693$	2.96651	4-22134
35	$10^{5} E$	992245	98904	98420	97855	96877	961648_{8}	95568	98055	97321	96469
	${ }^{y}$	10.29884	$10 \cdot 29649$	$10 \cdot 28724$	10.28334	10-26976	$10 \cdot 25911$	10.25007	10-28450	$10 \cdot 27416$	$10 \cdot 26140$
	$10^{2} I$	$1 \cdot 21250$	1.43243	$1 \cdot 80011$	$2 \cdot 35373$	$3 \cdot 58716$	4-78655	6.04428	$2 \cdot 14261$	$2 \cdot 96174$	$4 \cdot 21624$
45	$10^{5} E$	99398	99 079 ${ }_{\text {¢ }}$	98582	98018	97011	96286	95684_{8}		97476	96598
		10.05595	10.05487	$10 \cdot 04420$	$10 \cdot 04210$	$10 \cdot 02638$	10.01604	$10 \cdot 00857$		$10 \cdot 03324$	10.01856
	$10^{2} I$	$1 \cdot 20959$	$1 \cdot 42919$	1.79669	$2 \cdot 34978$	$3 \cdot 58296$	$4 \cdot 78207$	$6 \cdot 03947$.		$2 \cdot 95750$	$4 \cdot 21185$

Table 3.
2-Aminoethyl sulphate: molalities and ionic strengths of solutions, e.m.f.'s of cell (1), and extrapolation functions y [eqn. (5)].
$m_{1}=$ molality of 2 -aminoethyl hydrogen sulphate; $m_{2}=$ molality of $\mathrm{NaOH} ; m_{3}=$ molality of KCl ; $y=\mathrm{pwH}+\log \left(m_{1}-m_{2}+m_{\mathrm{OH}-}\right) /\left(m_{2}-m_{\mathrm{OH}}-\right) ; I=m_{2}+m_{3}$.

	$10^{2} m_{1}$	0.9044_{8}	1.0591	$1 \cdot 3968$	1.7798	2.2487	2.7750	3-1477
	$10^{2} m_{2}$	$0.4307{ }^{\text {a }}$	0.5043	$0 \cdot 6651$	0.8475	1.0708	$1 \cdot 3214{ }_{9}$	$1 \cdot 4989$
	$10^{2} m_{3}$	0.4762	0.5576	0.7354	0.9371	$1 \cdot 1839$	1.4611	1-6573
	$10^{2} I$	0.9069	1.0619	I-4006	1-7846	$2 \cdot 2548$	$2 \cdot 7826$	3-1562
Temp.								
5°	y	9.77110	9-77376	9.77416	9•77641	$9 \cdot 78011$	9-78286	9-78533
	$10^{5} E$	89904	89542	88883	88316	87777	87289	87001
15	y	$9 \cdot 46961$	$9 \cdot 47269$	$9 \cdot 47261$	$9 \cdot 47452$	$9 \cdot 47876$	$9 \cdot 48106$	$9 \cdot 48321$
	10^{5} E	90014	89642	88957	88368	87813	87305	87005
25	y	$9 \cdot 18880$	9-19252	$9 \cdot 19264$	9-19404	$9 \cdot 19880$	9-20065	$9 \cdot 20237$
	$10^{5} \mathrm{E}$	90063	89682	88975	88363	87792	87264	86951
35	y	$8 \cdot 92644$	$8 \cdot 93089$	8.93138	8.93348	8.93736	8.93965	$8 \cdot 94092$
	$10^{5} \mathrm{E}$	90055	89666	88938	88310	87715	87172	86846
45	y	$8 \cdot 68142$	$8 \cdot 68703$	$8 \cdot 68781$	8.68928	$8 \cdot 69289$	$8 \cdot 69523$	$8 \cdot 69545$
	$10^{5} \mathrm{E}$	89995	89601	88852	88200	87584	87024	86681
	$10^{2} m_{1}$	$3 \cdot 5495$	$4 \cdot 0149$	4.5894	4.8755	$5 \cdot 3189$	5.7574	6.2274 ${ }_{8}$
	$10^{2} m_{2}$	$1 \cdot 6903$	$1.9119{ }_{6}$	$2 \cdot 18549$	$2 \cdot 3218$	$2 \cdot 5329$	$2 \cdot 7417$	$2 \cdot 9656$
	$10^{2} m_{3}$	1-8689	$2 \cdot 1139{ }^{\text {a }}$	$2 \cdot 4164$	2-5670	$2 \cdot 8004_{7}$	$3 \cdot 0314$	$3 \cdot 2788$
	$10^{2} I$	$3 \cdot 5592$	$4 \cdot 0259$	$4 \cdot 6018$	$4 \cdot 8888$	5-3334	5.7731	$6 \cdot 2444$
Temp. ${ }^{\text {c }}$								
5°	y	9.78525	9•78798	9.78966	9.79178	9-79208	9-79184	9-79490
	10^{5} E	86713	86433	86122	85989	85782	85591	85420
15	y	9.48355	$9 \cdot 48608$	$9 \cdot 48757$	$9 \cdot 48935$	$9 \cdot 48990$	9.48976	9.49251
	$10^{5} E$	86709	86418	86095	85955	85742	85545	85366
25	y	9-20339	9-20577	9-20764	9-20850	9-20912	9-20896	9.21177
	10^{5} E	86649	86347	86015	85865	85645	85441	85256
35	y	8.94228	8-94386	$8 \cdot 94608$	$8 \cdot 94663$	8.94791	$8 \cdot 94789$	$8 \cdot 95025$
	$10^{5} \mathrm{E}$	86536	86219	85878	85721	85498	85288	85094
45	y	$8 \cdot 69778$	$8 \cdot 69925$	$8 \cdot 70142$	$8 \cdot 70072$	8.70367	8.70409	8.70598
	$10^{5} \mathrm{E}$	86367	86039	85687	85517	85297	85083	84880

Table 4.

2-Aminoethanol: the constants B and C of eqn. (5) and the values of $\mathrm{p} K_{a}$.
$\mathrm{p} K_{a}$ (obs.) was obtained from eqn. (5), $\mathrm{p} K_{a}$ (calc.) from eqn. (6); $\mathrm{p} K_{a}$ (Bates) are the values quoted by Bates and Pinching. ${ }^{7} \mathrm{p} K_{a}$ (calc.) $=2309 \cdot 66 / T+2.9209-0.0039152 T ; \sigma_{\mathrm{av}}$. is the average standard error of the intercepts $\left[\mathrm{p} \mathcal{K}_{G}\right.$ (obs.)] of eqn. (5) and $V(\log K)$ is the variance about the curve of eqn. (6); $\Delta=\mathrm{p} K_{a}$ (calc.) $-\mathrm{p} K_{a}$ (obs.).

Temp.	$\mathrm{p} K_{a}$ (obs.)	$10^{4} \sigma$	B	C	$\mathrm{p} K_{a}$ (calc.)	$10^{4} \Delta$	$\mathrm{p} K_{a}$ (Bates)
5°	10.1362	39	$0 \cdot 385$	0.888	10.135	-10	$10 \cdot 133$
15	$9 \cdot 8062$	40	$0 \cdot 270$	$1 \cdot 311$	9.808	$+17$	9.803
25	$9 \cdot 4994$	39	$0 \cdot 270$	$1 \cdot 410$	9.500	$+5$	$9 \cdot 496$
35	$9 \cdot 2117$	36	$0 \cdot 252$	1.577	$9 \cdot 209$	-23	$9 \cdot 209$
45	8.9336	55	-0.216	2.936	8.935	+11	8.940
av. 42					$\sqrt{ }[V(\log K)]=2.3 \times 10^{-3} . \sqrt{ }[V(\log K)]=1.3 \times 10^{-3}$.		

Table 5.

2-Aminoethyl phosphate: the constants B and C of eqn. (5) and the values of $\mathrm{p} K_{a}$ (third dissociation).
$\mathrm{p} K_{a}$ (obs.) was obtained from eqn. (5) and $\mathrm{p} K_{a}$ (calc.) from eqn. (6).
$\mathrm{p} K_{\boldsymbol{a}}$ (calc.) $=2998 \cdot 17 / T-1.3841+0.0065963 T ; \sigma_{\mathrm{av}}$ is the average standard error of the intercepts [p K_{a} (obs.)] of eqn. (5), and $V(\log K)$ is the variance about the curve of eqn. (6); $\Delta=$ $\mathrm{p} K_{a}$ (calc.) $-\mathrm{p} K_{a}$ (obs.).

Table 6.
2-Aminoethyl sulphate: the constants B and C of eqn. (5) and the values of $\mathrm{p} K_{a}$ (second dissociation).
$\mathrm{p} K_{a}$ (obs.) was obtained from eqn. (5) and $\mathrm{p} K_{a}$ (calc.) from eqn. (6).
$\mathrm{p} K_{a}$ (calc.) $=2530 \cdot 12 / T+0.2782+0.00140175 T ; \sigma_{\mathrm{av}}$ is the average standard error of the intercepts $\left[\mathrm{p} K_{a}\right.$ (obs.)] of eqn. (5), and $V(\log K)$ is the variance about the curve of eqn. (6); $\Delta=$ $\mathrm{p} K_{a}$ (calc.) $-\mathrm{p} K_{a}$ (obs.).

Temp.	$\mathrm{p} K_{a}$ (obs.)	$10^{4} \sigma$	B	C	$\mathrm{p} K_{a}$ (calc.)	$10^{4} \Delta$
5°	9.7638	4	1.055	-2.276	9.764	+2
15	9.4628	4	1.017	-2.205	9.462	-4
25	9.1821	4	1.066	-2.412	9.182	-2
35	8.9201	3	1.128	-2.633	8.921	+5
45	8.6768	5	1.004	-2.200	8.677	-2
						$\sqrt{4}[V(\log K)]=5 \cdot 0 \times 10^{-4}$.

Table 7.
Thermodynamic quantities for the amino-dissociations of 2-aminoethanol, 2-aminoethyl phosphate, 2 -aminoethyl sulphate, and taurine. ${ }^{6}$

$0.001_{3} \mathrm{pK}$ unit respectively. The difference here is more apparent than real since the latter figure is derived on the assumption that the Debye-Hückel equation is a simple linear relation, no account being taken of the uncertainty introduced by the arbitrary parameter a^{*}; it is not a true measure of the error and a valid comparison cannot, therefore, be made. It appears, however, that since the variances about the extrapolation lines are very nearly equal in both methods of extrapolation the errors of the intercepts must be comparable and near that for eqn. (5). When Bates and Pinching's results at 25° are extrapolated by means of our eqn. (5) the intercept is $9 \cdot 496_{7}$, to be compared with $9 \cdot 498_{0}$ obtained by Bates and Pinching using the full Debye-Hückel equation. This, together with the excellent agreement between the two sets of results mentioned above, seems to indicate that eqn. (5) is of more general applicability in systems of this sort, than is the full Debye-Hückel equation.

The only other accurate determination of the thermodynamic $\mathrm{p} K_{a}$ (at 25° only) is that of Sivertz, Reitmeier, and Tartar ${ }^{9}$ from conductivity measurements. Their value of $9 \cdot 500$ is in excellent agreement with ours. Other determinations are quoted by Bates and Pinching. ${ }^{7}$ The value of ΔH^{0} for this ionisation is largely consistent with the reaction's being isoelectric and with the magnitude of $\mathrm{p} K_{a}$.
ΔS^{0}, however, is rather more negative than might have been expected, as is found with the monomethylammonium dissociation, and possibly for the same reasons. In our paper on the ionisations of N-methylated glycine derivatives we suggested that the principal cause of the anomaly might be the so called " iceberg " effect. ${ }^{10}$

The thermodynamic quantities associated with the ionisations of the ammonium groups in 2 -aminoethyl phosphate and 2 -aminoethyl sulphate may be explained in terms of the changes in electrostatic interaction between the various acid-base species and the surrounding medium (water). The problem has been studied in the same way as for arginine and glycine. ${ }^{\mathbf{1 0 , 1 1}}$ Changes in thermodynamic quantities associated with the interaction of any charged species with the medium may be represented as follows:

$$
\begin{align*}
\Delta G_{\mathrm{el}}^{0} & =p(\mathrm{l} / D) \tag{7}\\
\Delta S_{\mathrm{el}}^{0} & =-p[\mathrm{~d} / \mathrm{d} T(\mathbf{1} / D)] \tag{8}\\
\Delta H_{\mathrm{el}}^{0} & =p[\mathbf{1} / D-T \mathrm{~d} / \mathrm{d} T(1 / D)] \tag{9}\\
\Delta C_{p},,_{\mathrm{el}} & =-p\left[T \mathrm{~d}^{2} / \mathrm{d} T^{2}(\mathbf{1} / D)\right] \tag{10}
\end{align*}
$$

In each of these equations p is a constant characteristic of the charged species and the second factor is a known function of the dielectric constant.

For a molecule bearing several charges, it is most convenient to use Kirkwood's model, a sphere of uniform dielectric constant with the charges embedded at a fixed distance from the surface. ${ }^{12}$ It is further assumed that the intramolecular dielectric constant is invariant with temperature, and terms involving it are not considered. For the calculation of p, it is necessary to know the " depth" of the charges, their relative distances, defined by the angles $\left(\theta_{k l}\right)$ between lines joining the charges to the centre of the spherical molecule, and the radius of the sphere. The problem is complicated by the many conformations that the molecule can assume in solution. However, it is reasonable to suppose that there is a time-average preferred conformation. In the absence of other data all that can be done is to make a guess on the basis of models. In this work, however, the structure of

[^2]2-aminoethyl phosphate was assumed to be similar to that of crystalline l-serine phosphate deduced from X-ray diffraction data by McCallum et al. ${ }^{14}$

The interatomic distances (to two decimal places) are as follows: $\mathrm{C}_{1}-\mathrm{C}_{2} 1.53 \AA ; \mathrm{C}_{1}-\mathrm{N}$ $1.47 \AA ; \mathrm{C}_{2}-\mathrm{O}_{1} 1.47 \AA ; \mathrm{P}-\mathrm{O}_{1} 1.61 \AA ; \mathrm{P}-\mathrm{O}_{2} 1.52 \AA ; \mathrm{P}-\mathrm{O}_{3} 1.50 \AA$; and $\mathrm{P}-\mathrm{O}_{4}$
 $1.56 \AA$; there is also an intramolecular hydrogen bond between O_{2} and $\mathrm{N}\left(\mathrm{N}-\mathrm{O}_{2} 2.79 \AA\right)$. The chain $\mathrm{O}_{4}-\mathrm{P}-\mathrm{O}_{1}-\mathrm{C}_{2}-\mathrm{C}_{1}$ is roughly coplanar, with the remaining atoms projecting away from it. This structure actually relates to the solid $-\mathrm{HO}_{3} \mathrm{P} \cdot \mathrm{O} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{NH}_{3}{ }^{+}$, i.e., the acid species of the second dissociation. From the distances between phosphorus and the "free" oxygen atoms, it is apparent that two of the latter are approximately equivalent and presumably bearing the negative charge which resonates between them. It was then assumed that when a proton is lost (presumably from O_{4}), all three external oxygen atoms become equivalent with now two negative charges resonating among them, all $\mathrm{P}-\mathrm{O}$ distances being $\sim 1.5 \AA$.

To evaluate the electrostatic contribution to the thermodynamic functions, the two negative charges, considered in isolation, were assumed to lie at the centre of a sphere with a radius of $1.52 \AA$. Then, as in the treatment of the arginine dissociations, the free energy associated with such ion calculated from the Born equation ${ }^{13}$ ($\left.\Delta G_{\mathrm{el}}=z^{2} e / 2 R D\right)$ is equated to the appropriate self-energy term in the modified Kirkwood equation associated with this charge as part of the molecule: ${ }^{11}$

$$
z^{2} e / R D=b /\left(b^{2}-r^{2}\right)
$$

where b is the radius of the spherical molecule, r the distance between the charge and the centre of the molecule, and R the radius of the " free" ion. A similar calculation can be made for the positive charge on the nitrogen atom (taking $R=1.40 \AA$). ${ }^{11}$ The average charge " depth " (average for $\mathrm{R}^{ \pm}, \mathrm{R}^{+2-}$, and R^{2-}) is then found to be $0.84 \AA$ for $b=3.50 \AA$. This procedure is unjustified if the individual charges are associated with widely differing radii; with 2 -aminoethyl phosphate, however, this is not the case. The shape of the molecule is ellipsoidal rather than spherical, and this value of b represents half the long axis. From the geometry of the molecule the $\mathrm{P}-\mathrm{N}$ distance was calculated to be $3.31 \AA$ and hence $\theta_{k l}$ for R^{+2-} is $76^{\circ} 57^{\prime} ; p$ can now be evaluated. The details of the calculation have been given elsewhere. ${ }^{11}$

The value of p for the basic species $\left(\mathrm{NH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{O} \cdot \mathrm{PO}_{3}{ }^{2-}\right)$ can be obtained readily and its overall value for the ionisation

$$
+\mathrm{NH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{O} \cdot \mathrm{PO}_{3}^{2-}+\mathrm{H}_{2} \mathrm{O} \Longrightarrow \mathrm{NH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{O} \cdot \mathrm{PO}_{3}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

can. be found $\left[p_{\mathrm{H}, \mathrm{O}^{+}}=\left(7.551 \times 10^{5}\right)-p=1.0518 \times 10^{6}\right]$. The corresponding " electrostatic" thermodynamic functions are given in Table 8.

These values may be compared with the "environmental" thermodynamic quantities ($\Delta G^{\mathbf{0}}{ }_{\text {env, }}$ etc.) which are calculated on the assumption that the experimental value of $\Delta C_{p}{ }^{0}$ is entirely due to electrostatic interactions. The reciprocal of the dielectric constant of water, ${ }^{15} 1 / D$, may be represented by the equation

$$
\begin{equation*}
1 / D=a-b T+c T^{2}=8.5756 \times 10^{-3}-2.9915 \times 10^{-5} T-1.4741 \times 10^{-7} T^{2} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta C_{p . \mathrm{el}}^{\mathbf{0}}=p\left[-T \mathrm{~d}^{2} / \mathrm{d} T^{2}(\mathbf{1} / D)\right]=-2 c T p \tag{12}
\end{equation*}
$$

Since from Harned and Robinson's equation $\Delta C_{p}{ }^{0}$ is equal to $-2 \boldsymbol{R} \ln 10 C T$, an " experimental " value of p may be obtained:

$$
p_{\text {esp. }}=\boldsymbol{R} \ln 10 C / c=12.987 \times 10^{7} C \text { joules. }
$$

[^3]${ }^{14}$ McCallum, Robertson, and Sim, Nature, 1959, 184, 1863.
${ }_{15}$ Malmberg and Maryott, J. Res. Nat. Bur. Stand., 1956, 50, 1.

Table 8.

The " electrostatic," " environmental," and " non-environmental" thermodynamic quantities associated with the acid dissociations of 2 -aminoethyl phosphate, 2aminoethyl sulphate, and taurine at 25° : the measured overall quantities are included for comparison.
(ΔG and ΔH in $k J$ mole ${ }^{-1} ; \Delta S$ and ΔC_{p} in J mole ${ }^{-1}$ deg. ${ }^{-1}$.)

	2-Aminoethyl phosphate (2nd dissn.)	2-Aminoethyl phosphate (3rd dissn.)	2-Aminoethyl sulphate (2nd dissn.)	Taurine (2nd dissn.)
$\Delta G^{0}{ }_{\text {el }}$	$20 \cdot 30$	13.43	6.09	6.09
$\Delta H^{0}{ }_{\text {el }}$	-7.20	$-4 \cdot 76$	-2.16	-2.16
$\Delta S^{0}{ }_{\text {el }}$	-92.2	-61.0	-27.6	$-27 \cdot 6$
$\Delta C^{0}{ }^{\text {a }}$ el	-139.7	-92.5	-41.9	-41.9
$\Delta G^{0}{ }_{\text {env }}$	24.76	10.94	$2 \cdot 32$	$5 \cdot 09$
$\Delta H^{\mathbf{0}}{ }_{\text {env }}$	-8.78	-3.88	-0.82	-1.81
$\Delta S^{\text {env }}$	-112.5	$-49 \cdot 7$	-10.6	-23.1
$\Delta C_{p}{ }^{0} \mathrm{env}$	$-170 \cdot 4$	-75.3	-16.0	$-35 \cdot 0$
$\Delta G^{0}{ }_{\text {non }}$	8.56	49.78	$50 \cdot 09$	47.22
$\Delta H^{0}{ }_{\text {non }}$	6.89	50.05	46.87	43.65
$\Delta S^{0}{ }_{\text {non }}$	$-5 \cdot 6$	$0 \cdot 9$	-10.73	$-10 \cdot 0$
ΔG^{0}	33.325	60.725	$52 \cdot 412$	52.31*
ΔH^{0}	-1.892	46.17	46.05	41-84*
ΔS^{0}	-118.1	-48.8	-21.33	-33.1*
$\Delta C_{p}{ }^{0}$	-170.4	$-75 \cdot 3$	-16.0	$-35 \cdot 0$ *

This can be used to calculate the environmental thermodynamic quantities from eqns. (7)-(10).

A similar calculation was made for the second ionisation of 2 -aminoethyl phosphate, the same shape and dimensions of the ions and the same intercharge distances being assumed; in the acid species there is, of course, now only one negative charge centred on the phosphorus, and in the basic species, two:

$$
\mathrm{H}_{2} \mathrm{R}^{ \pm}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HR}^{+2-} ;
$$

p for this dissociation is $\mathbf{1 . 5 8 9 8} \times 10^{6}$. The results have been compared with the " environmental" quantities calculated from the experimental data of Clarke, Datta, and Rabin. ${ }^{1}$ Table 8 shows that the calculated electrostatic and the experimentally determined " environmental" thermodynamic quantities are at least in good qualitative agreement. In view of the complexity of the ionic species involved and the approximate method of calculation employed, this may be regarded as satisfactory.

Kapustinsky ${ }^{16}$ recently published a list of heats of hydration of a large number of ions. When those for $1+$ cations are plotted against $1 / r\left(r=\right.$ crystal radius of an ion), ${ }^{17}$ a smooth curve can be drawn from which $\gamma_{\mathrm{H}_{3} 0^{+}}$can be obtained by interpolation as $0.81 \AA$, to be compared with $0.92 \AA$ used in our previous work. It is interesting that interpolation of Pauling's table of crystal radii (with $r_{\mathrm{Li}^{+}}$and $\gamma_{\mathrm{Na}}{ }^{+}$or $\gamma_{\mathrm{Na}^{+}}$and $r_{\mathrm{K}^{+}}$) for a $1+$ ion of mass 19 yields $r_{\mathrm{H}_{3} \mathrm{O}^{+}}=0.86 \AA$. If $0.81 \AA$ is accepted as the correct value, the contribution to p in any of the above dissociations will increase by $0.1025 \times 10^{6} \mathrm{~J}$. This means that, at $25^{\circ}, \Delta G^{0}{ }_{\text {el }}$ has to be diminished (made more negative) by $13.1 \mathrm{~kJ}, \Delta S^{0}{ }_{\mathrm{el}}$ by $5.95 \mathrm{~J} / \mathrm{deg}$., $\Delta H^{0}{ }^{0}$ by 0.46 kJ , and $\Delta C_{p}{ }^{0}{ }^{\text {el }}$ by $9.0 \mathrm{~J} /$ deg., which leads to somewhat better agreement with experiment.

No crystallographic studies on 2-aminoethyl sulphate appear to have been made, but as models indicate its close similarity to 2 -aminoethyl phosphate, the same structure as for the latter may be assumed as a first approximation. Thus the molecule is regarded

[^4]
3076 Acid Dissociation Constants of the Ammonium Group, etc.

as a sphere of $3.5 \AA$ radius; the acid species has a single negative charge centred on the sulphur atom (the charge is assumed to resonate among the oxygen atoms around the sulphur) and a single positive charge on the nitrogen; the basic species has only the negative charge. Calculation similar to the above leads to $p_{\text {calc }}=0.4768 \times 10^{6} \mathrm{~J}$. Now $p_{\text {exp }}=0.1820 \times 10^{6} \mathrm{~J}$, and consequently the agreement between the "electrostatic" and "environmental" thermodynamic quantities in Table 8 is comparatively poor (qualitatively the two sets agree). However, the environmental quantities for taurine, which differs from 2 -aminoethyl sulphate only in an intervening oxygen atom between the sulphur and the carbon atom, agree much better with experiment. Models show that the shapes of the two molecules differ little, taurine being a little smaller and more compact; it appears possible to bring one of the oxygen atoms and the quaternary nitrogen atom into somewhat closer juxtaposition than in 2 -aminoethyl sulphuric acid. If we postulate that the environmental quantities are largely electrostatic, two interpretations of the results are possible: (a) the contribution of the 2 -aminoethyl sulphate ion to the overall change in the electrostatic energy is smaller than expected; (b) that of the zwitterion is larger. The second interpretation appears the more likely, since a substantial difference in the behaviour of taurine ions and 2 -aminoethyl sulphate ions is improbable. We are thus left with the implication that the mutual cancellation of the positive and the negative charges in the 2 -aminoethyl hydrogen sulphate zwitter-ion does not take place to the extent postulated.

Experimental

2-Aminoethanol Hydrochloride.-2-Aminoethanol (B.D.H) was distilled and converted into the hydrochloride by dropping it slowly into bromine-free $\sim 7 \mathrm{~N}$-hydrochloric acid. The resulting crystals were filtered off, washed, recrystallised, and dried in a desiccator over $\mathrm{P}_{2} \mathrm{O}_{5}$. The purity ($\mathbf{9 9 . 6 3 \%}$, average of three determinations) of the material was checked by gravimetric estimation of the chloride content (as AgCl). Potentiometric titration gave a purity of 99.40% with a thermodynamic $\mathrm{p} K_{a}$ at 25° of $9.505 \pm 0.009(\mathrm{pH} 9.2-10.0)$; formol titration gave a purity of $99 \cdot 53 \%$. The m. p. was $83 \cdot 5-84 \cdot 0^{\circ}$ (cf. Gawriloff, ${ }^{18} 75-77^{\circ}$). One stock solution containing 2 -aminoethanol hydrochloride and sodium hydroxide was prepared from which eleven dilutions were made for use in the cells without liquid junction; the ionic strengths of these dilutions varied from ~ 0.02 to ~ 0.08. Since the hydrochloride is somewhat hygroscopic, its concentration in the stock solution was determined gravimetrically as silver chloride; the result corresponded to a purity of the initial solid of 99.58%. The concentration of the base in the stock solution was estimated by weight titration with hydrochloric acid and a 0.1% solution of Chlorophenol Red screened with 0.1% of Aniline Blue.

2-Aminoethyl Dihydrogen Phosphate.-This material was from the sample used by Clarke, Datta, and Rabin. ${ }^{1}$ Two stock solutions containing 2 -aminoethyl dihydrogen phosphate, sodium hydroxide, and potassium chloride were prepared. Sixteen dilutions were made from the first stock and ten from the second; the ionic strength range covered was $\sim 0.01 \sim \sim 0.09$.

2-Aminoethyl Hydrogen Sulphate.-A commercial sample (L. Light \& Company, Colnbrook) was recrystallised from water and analysed by formol titration. Fourteen dilutions were prepared from one stock solution containing 2 -aminoethyl hydrogen sulphate, sodium hydroxide, and potassium chloride, the ionic strengths being in the range $0.01-0.06$.

Potassium Chloride.-" Analar " material was dissolved in water, the solution was chlorinated, and the solid was precipitated from solution by saturation with gaseous bromine-free hydrogen chloride. The salt was filtered off, dried at 160°, and fused in an atmosphere of dry nitrogen.

The preparation of carbonate-free sodium hydroxide, measurement of the e.m.f.'s of the cells without liquid junction, and measurement of temperature have been described previously. ${ }^{19,20}$

[^5]Fundamental Constants.-The values used in this work were those given by DuMond and Cohen. ${ }^{21}$
E_{0} of the Silver-Silver, Chloride Electrodes.-The values of the E_{0} of the $\mathrm{Ag}-\mathrm{AgCl}$ electrodes were calculated from eqn. (4) of Bates and Bower. ${ }^{22}$

One of the authors (A. K. G.) is indebted to the Medical Research Council for personal support during part of this work. The authors thank the Central Research Fund of the University of London for a grant to purchase some of the potentiometric equipment, and Mr. V. L. Bengeri for technical assistance.

Biochemistry Department, University College, Gower Street, London, W.C.1.
[Received, November 15th, 1961.]
${ }^{21}$ DuMond and Cohen, Rev. Mod. Phys., 1953, 55, 691.
${ }^{22}$ Bates and Bower, J. Res. Nat. Bur. Stand., 1954, 53, 283.

[^0]: * In this paper 2-aminoethyl phosphate and 2-aminoethyl sulphate are used to include all the ionic species of 2 -aminoethyl dihydrogen phosphate and 2 -aminoethyl hydrogen sulphate present in any given solution.
 ${ }^{1}$ Clarke, Datta, and Rabin, Biochem. J., 1955, 59, 209.

[^1]: ${ }^{2}$ Datta and Grzybowski, Trans. Faraday Soc., 1958, 54, 1179.
 ${ }^{3}$ Robinson and Stokes, "Electrolyte Solutions," Butterworths Scientific Publ., London, 1955, p. 496.
 ${ }_{5}^{4}$ Datta and Grzybowski, J., 1959, 1091.
 ${ }^{5}$ Harned and Robinson, Trans. Faraday Soc., 1940, 36, 973.
 ${ }^{6}$ King, J. Amer. Chem. Soc., 1953, 75, 2204.
 7 Bates and Pinching, J. Res. Nat. Bur. Stand., 1951, 46, 349.
 ${ }^{8}$ Please, Biochem. J., 1954, 56, 196.

[^2]: ${ }^{9}$ Sivertz, Reitmeier, and Tartar, J. Amer. Chem. Soc., 1940, 62, 1379.
 10 Datta and Grzybowski, Trans. Faraday Soc., 1958, 54, 1188.
 ${ }_{11}$ Datta and Grzybowski, Biochem. J., 1961, 78, 289.
 12 Kirkwood, J. Chem. Phys., 1934, 2, 767.

[^3]: ${ }^{13}$ Born, Z. Phys., 1920, 1, 45.

[^4]: 16 Kapustinsky, Zhur. fiz. Khim., 1958, 32, 1648.
 ${ }^{17}$ Pauling, " The Nature of the Chemical Bond," Cornell University Press, Ithaca, New York, 3rd Edition, 1960, p. 514.

[^5]: ${ }^{18}$ Gawriloff, Bull. Soc. chim. France, 1925, 37, 1651.
 ${ }^{19}$ Ashby, Crook, and Datta, Biochem. J., 1954, 56, 190.
 ${ }^{20}$ Clarke, Cusworth, and Datta, Biochem. J., 1954, 58, 146.

